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SPERMSEG: Analysis of Segregation Distortion in
Single-Sperm Data

To the Editor:
Single-sperm typing has proved to be a valuable tool for
detection of segregation distortion at a variety of loci in
males (Williams et al. 1993; Leeflang et al. 1996; Ta-
kiyama et al. 1997; Girardet et al. 1998; Grewal et al.
1999; Takiyama et al. 1999). Sperm typing can provide
the large sample sizes needed to detect even small de-
viations from 50:50 segregation that might arise during
meiosis or that are due to differential sperm viability
during or immediately after spermiogenesis (Leeflang et
al. 1996). Furthermore, the problem of ascertainment
bias, a serious concern in family-based studies of seg-
regation distortion, is circumvented by sperm typing.
However, in order to analyze such sperm data, one must
model experimental errors—such as failure of alleles to
amplify to a detectable level, deposit of 0 or 11 sperm
in a sample, and contamination by exogenous DNA (Cui
et al. 1989). Here I describe SPERMSEG, software pro-
grammed in C to analyze segregation in single-sperm
data. This likelihood-based software is very flexible, al-
lowing for any number of one- and two-marker data
sets from one or more donors, with the capabilities to
fit virtually any identifiable submodel of interest, to pro-
vide confidence intervals for all parameters, and to per-
form a wide range of hypothesis tests, including simu-
lation-based goodness-of-fit tests.

For a likelihood analysis of segregation distortion us-
ing single-sperm data, the basic study design involves
one or more two-marker data sets from each of several
donors. By a two-marker data set, I mean that, for a
given donor, two markers, for which the donor is het-
erozygous and which are linked to the locus of interest,
are typed on each of a number of sperm. The reason
two markers are typed is that if only one marker were
typed on each sperm, it would not be possible to estimate
the error parameters in the sperm-typing model. How-
ever, with additional assumptions, one-marker data sets
can be included in the analysis, in addition to two-
marker data sets. Such additional assumptions could in-
clude equality, between one-marker and two-marker

data sets, of some of the error parameters. Only markers
for which the donor is heterozygous can be included in
the SPERMSEG analysis. Data from markers for which
the donor is homozygous contain no information on
segregation distortion (although they may contain a very
small amount of information on the error parameters).
Thus, it is assumed that each donor’s sperm are typed
only for markers for which the donor is heterozygous,
with those markers allowed to differ among donors, and
with possibly different pairs of markers typed for dif-
ferent subsets of sperm from the same donor.

Let G be the locus of interest, with alleles G and g in
a given donor. Each two-marker data set involves sperm
typed at a pair of markers A and B, at which a given
donor has alleles A/a and B/b, respectively, linked to G.
Assume that the donor haplotypes are known, say GAB/
gab, and assume that the three recombination proba-
bilities , , and , between G and A, G and B,v v vGA GB AB

and A and B, respectively, are known. This parametri-
zation of the recombination probabilities is completely
general, to allow for interference. Special cases in which
one or both of A and B are completely linked to G are
allowed and lead to simplified calculations. The ob-
served data for a given donor and pair of markers are
assumed to be multinomial, with 16 possible outcomes:
––––, –––b, ––B–, ––Bb, ––a–, –a–b, –aB–, –aBb,
A–––, A––b, A–B–, A–Bb, Aa––, Aa–b, AaB–, and
AaBb, where, for example, –––– means that no allele
was amplified to a detectable level, and, for example,
–aBb means that alleles a, B, and b were detected, but
A was not. For each donor, there may be several such
two-marker data sets, with one or both of the linked
markers differing among data sets. Different donors may
be typed at different markers and, in general, will have
alleles different from each other. In SPERMSEG, there
is no limit on the overall number of markers or number
of alleles, except that each sperm is assumed to be typed
at no more than two markers.

Consider a single two-marker data set. The segrega-
tion-distortion model for the two-marker data set was
described by Leeflang et al. (1996) for the special case
when G, A, and B are completely linked, and it is also
a good approximation when there is very tight linkage.
This model includes segregation parameter (sperms = P
has allele G), with (sperm has allele g). It in-1 � s = P
cludes sperm-deposit parameters , which allow for thegi
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possibility that, instead of one sperm being present in a
given sample, either zero or two sperm are present,
where (i sperm present in a given sample),g = P i =i

, with the assumption . The model0,1,2 g � g � g = 10 1 2

includes amplification parameters , , , and ,a a a aA a B b

where, for example, is the probability that allele AaA

is amplified to a detectable level by PCR, given that it
is present on a single sperm. If two sperm are deposited,
both with allele A, then the two A alleles are assumed
to amplify independently of one another, each with prob-
ability . The contamination parameters are , ,a b bA A a

, and , where, for example, is the probability thatb b bB b A

allele A is falsely detected because of contamination by
exogenous DNA. This model is very close to the original
model developed by Cui et al. (1989) for estimation of
a recombination fraction, which was extended to three
loci by Goradia et al. (1991). Both of these models in-
clude deposit parameters , , assumed tog i = 0,1,2,3,4i

sum to 1, and amplification and contamination param-
eters as given above. Cui et al. (1989) have an unknown
recombination fraction in their model, whereas Goradia
et al. (1991) have two unknown recombination fractions
with an unknown interference coefficient, a parametri-
zation that is equivalent to our trio of recombination
probabilities. Both models assume . The segrega-s = .5
tion-distortion model described here is a three-locus
model, as in the article by Goradia et al. (1991), but s
is allowed to vary, the amplification and contamination
parameters for locus G are effectively set to 0, and the
recombination probabilities are assumed to be known
instead of estimated. Furthermore, since the parameters

and are always estimated as 0 in the articles byg g3 4

Cui et al. (1989) and Goradia et al. (1991), I follow the
lead of Lazzeroni et al. (1994), in setting them to 0. Cui
et al. (1989) and Goradia et al. (1991) have not shown
that their model including and is actually identi-g g3 4

fiable. If it is assumed that it is identifiable, there is cer-
tainly very little information, in a reasonably sized data
set, with which to estimate and , and the fact thatg g3 4

is typically estimated at just a few percent suggestsg2

that these values are close to 0 in any case.
Now, suppose that several two-marker data sets are

to be analyzed simultaneously. For instance, one might
have two two-marker data sets from donor 1 (perhaps
with different markers; i.e., some sperm are typed at
markers A and B, and other sperm are typed at markers
C and D), a two-marker data set from donor 2, and a
two-marker data set from donor 3. One might wish to
analyze the data by using a model with, say, donor-
specific segregation parameters, experiment-specific de-
posit parameters, allele-specific amplification parame-
ters, and locus-specific contamination parameters.
SPERMSEG is designed to be very flexible in allowing
the user to specify such models and will maximize the
likelihood subject to these constraints. Any segregation

parameters may be set equal to each other or to fixed
values—similarly for deposit, amplification, and con-
tamination parameters. This is especially useful for test-
ing hypotheses of interest, such as whether there is seg-
regation distortion at all in a collection of data sets;
whether, among donors within a phenotypic class, there
is heterogeneity in the segregation ratio; and whether,
among phenotypic classes, there is heterogeneity in the
segregation ratio. Parameter estimates and the maxi-
mized log-likelihood are output for each model that the
user selects. SPERMSEG allows the user to calculate con-
fidence intervals for all estimated parameters under any
of these models as well.

In addition to two-marker data sets, there may be one
or more single-marker data sets. Each single-marker data
set involves sperm typed at a single marker C, at which
a given donor has alleles C and c, linked to G with
known recombination fraction (possibly 0). The four
possible multinomial observations are then –, -c, C-, Cc.
There are only three freely varying observed counts, so
the segregation, deposit, amplification, and contamina-
tion parameters (seven parameters in all, in this case)
cannot be estimated from such a data set alone. How-
ever, either in combination with two-marker data sets
from which these parameters can be estimated, or with
some of the error parameters assumed to be known, the
single-marker data sets provide additional information.
Thus, of the seven parameters in a one-locus data set,
most of them either must be set equal to comparable
parameters in some two-locus data set that is also in-
cluded in the analysis or must be set equal to fixed values,
if appropriate values are known. SPERMSEG allows for
any number of one-marker data sets to be included in
the analysis, in addition to the two-marker data sets,
with the user specifying which parameters are to be set
equal to each other or to fixed values, so that the model
is identifiable.

SPERMSEG uses the expectation-maximization (EM)
algorithm of Dempster et al. (1977) to maximize the
likelihood. For a single one- or two-marker data set, the
complete-data likelihood is simply a product of bino-
mials and multinomials. For the published and simulated
sperm-typing data sets so far analyzed for segregation
distortion, the EM algorithm has quickly converged to
the global maximum of the likelihood, even from start-
ing points relatively far from the maximum. SPERMSEG
allows the user to specify different starting points, if
desired, to help determine that a global maximum has
been reached.

In maximum-likelihood analysis of sperm-typing data,
it is common to have some parameters estimated on the
boundary of the parameter space. These are either con-
tamination parameters (b) or probabilities of two sperm
deposited (g2) that are estimated to be 0. When this
occurs, the gradient of the log-likelihood of the data at
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the maximum-likelihood estimate is not necessarily 0,
and it is not appropriate to estimate the standard errors
of the parameter estimates by calculating the Fisher in-
formation. Instead, the SPERMSEG software inverts the
likelihood-ratio test to obtain confidence intervals for
the parameter estimates. Confidence intervals obtained
by inverting the likelihood-ratio test are generally more
accurate than those obtained from the Fisher informa-
tion, even when the maximum-likelihood estimate is in
the interior of the parameter space.

One can perform a x2 goodness-of-fit test to make
sure that the model used to analyze the sperm-typing
data actually fits the data. However, when some param-
eters are estimated on the boundary of the parameter
space, the appropriate number of df for the x2 test is no
longer clear. SPERMSEG has a built-in simulation rou-
tine to calculate a P value, for the goodness-of-fit test,
that will be valid even when some parameters are esti-
mated on the boundary.

In order to make full use of single-sperm typing as a
valuable tool for the study of segregation distortion, flex-
ible software must be available to analyze the resulting
data. SPERMSEG allows for any number of one- and
two-marker data sets from one or more donors. It per-
forms full likelihood analysis of the data, using models
of the user’s choice. Log-likelihoods are output for use
in hypothesis testing, and confidence intervals based on
inverting the likelihood-ratio test and simulation-based
goodness-of-fit tests are calculated, both of which are
reliable even when parameters are estimated on the
boundary.
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Cultural Difference and the Eugenics Law

To the Editor:
Mao recently reported results of a survey of Chinese
geneticists’ views on ethical issues in genetic testing and
screening, which are quite different from those of their
Western counterparts (Mao 1998). Although this report
provides a welcome opportunity to further illuminate
the East-West controversy that surrounds the Chinese
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